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DJXEJXPMENT OF MICHELL MINIMUM WEIGHT STRUCTURES 

By Dhanjoo N .  Ghista and Meyer M. Resnikoff 

Ames Research Center 

SUMMARY 

The Michell s t r a i n  c r i t e r i o n  i s  used t o  develop minimum weight s t ruc tu res  
t o  equ i l ib ra t e  some i n t e r e s t i n g  force  systems of s ign i f icance  to aeronautics 
and t h e  space technology. 
members of a minimum volume s t r u c t u r e  ( i . e . ,  a s t r u c t u r e  having t h e  minimum 
amount of mater ia l )  to equ i l ib ra t e  a given force system. 

Michell prescribed a s t r a i n  c r i t e r i o n  fo r  t h e  

The research work contr ibutory t o  t h i s  paper i s  divided i n t o  th ree  inde- 
pendent sec t ions .  I n  t h e  first sect ion,  a theorem is  presented on t h e  super- 
pos i t ion  of Michell s t ruc tu res  and appl ied t o  develop optimum s t ruc tu res  for 
two bas ic  force  systems. With t h i s  theorem a force  system t h a t  does not lend 
i t s e l f  to a unique so lu t ion  ( i . e . ,  a unique optimum s t ruc tu re )  may be t r e a t e d  
by resolving it i n t o  two or more systems, determining t h e  so lu t ions  to t h e  
reso lu tes ,  and then superposing them t o  give t h e  so lu t ion  f o r  t h e  t o t a l  force  
system. 
method s a t i s f i e s  t h e  Michell optimum s t ruc tu re .  

The theorem shows t h a t  t h e  so lu t ion  obtained by t h i s  superposit ion 

I n  t h e  second sec t ion  a so lu t ion  i s  obtained to t h e  governing equations 
developed by Hemp fo r  t h e  form of an optimum s t ruc tu re  sa t i s fy ing  t h e  Michell 
s t r a i n  c r i t e r i o n  condi t ion i n  two dimensions. This so lu t ion  gives  a unique 
system of coordinate curves f o r  t h e  member layout of t h e  Michell s t ruc tu re .  
This system can be employed t o  o f f e r  optimum s t ruc tu res  f o r  a va r i e ty  of 
force systems ac t ing  on plane rectangular and curv i l inear  domains. 

I n  t h e  t h i r d  sec t ion  two well-known orthogonal systems of curves - t he  
dipolar  and t h e  spher ica l  - a r e  se lec ted  fo r  member layout of Michell s t ruc -  
t u r e s .  The volume of a Michell s t ruc tu re  i s  a function of t h e  displacements 
of t h e  points  of appl ica t ion  of t h e  applied forces;  hence fo r  t h e  dipolar and 
spher ica l  coordinate systems, t h e  generalized displacements a r e  obtained for  
t h e  Michell s t r a i n  pa t t e rn .  Some in t e re s t ing  loading systems r e s u l t  when 
t h e  two coordinate systems are used i n  developing Michell optimum s t ruc tu res .  
The dipolar  system gives  r i s e  to a s t ruc tu re  which could conceivably be 
employed for  a n  en t ry  body t h a t  had a displaced center  of grav i ty  with respect  
to the  geometric center .  Another appl ica t ion  of t h i s  system i s  a s t ruc tu re  
which d i s t r i b u t e s  a concentrated load over a wide bearing area,  thereby reduc- 
ing t h e  p o s s i b i l i t y  of l a rge  deformations of t h e  material. An appl ica t ion  of 
t h e  spher ica l  system gives r i se  to a spher ica l  p res t ressed  s t ruc tu re ,  under a 
su i t ab le  force system. 

I . ,  . .  . . . . __  .... . . .  . 



IlWRODUCSIION 

I n  aeronautics s t ruc tu res  a r e  needed t h a t  can withstand a given load 
system and that have a m i n i m u m  volume. of material. For a given load system 
t h i s  object ive i s  more e a s i l y  achieved if t h e  p robab i l i t y  of f a i l u r e  i s  
allowed t o  be small ins tead  of zero ( re f .  1). However, t h e  development and 
appl ica t ion  of t h e  theory of optimum s t ruc tu res ,  which i s  t h e  subject  of t h i s  
paper, i s  s t r i c t l y  a problem i n  s t r u c t u r a l  mechanics; hence, i n  t h i s  case, 
t h e  ideal ized vers ion of f a i l u r e  (of probabi l i ty  z e r o )  i s  adopted. 

For research i n  t h e  f i e l d  of s t r u c t u r a l  optimization, t h e  s t r u c t u r a l  
design i s  usual ly  represented by design parameters of t h e  appropriate  shape 
and s i ze ,  t h e  merit function i s  expressed i g  terms of these  parameters and 
minimized with respect  t o  them, within l i m f ' t s  of t h e  cons t ra in ts ,  by using 
nonlinear programming techniques ( see  re f .  2) . 
based on displacement or s t r a i n  c r i t e r i o n  could be used t o  f i n d  t h e  s t ruc tu re  
with t h e  absolute  minimum volume for  t h e  given load system. The form of t h e  
s t ruc tu re  could be developed as a consequence. Such an approach gives t h e  
absolute  m i n i m u m  volume s t ruc tu re  for t h e  given load system. 
( r e f .  3) insp i red  research along these  l i n e s .  For a given system of s e l f -  
equi l ibra t ing  forces ,  Michell has l a i d  down a deformation c r i t e r i o n  which i f  
s a t i s f i e d  by a framework w i l l  give a s t r u c t u r e  of a minimum volume, t h a t  i s ,  
of a minimum amount of mater ia l .  Cox ( r e f .  4) drew t h e  a t t e n t i o n  of engineers 
t o  Michell 's  r e s u l t s  and, by contr ibut ing t o  t h e  appl ica t ion  of these  r e s u l t s ,  
championed t h e  cause of optimum s t r u c t u r a l  design. Hemp ( r e f .  5) has incor-  
porated the  Michell c r i t e r i o n  of s t r a i n  i n t o  a two-dimensional theory of 
optimum frameworks and has developed some spec ia l  forms. Further,  Michel l ' s  
theorem has been appl ied t o  develop optimum frameworks for  some usefu l  
p r a c t i c a l  load systems ( see  r e f s .  6, 7 ,  8, and 9). 

On t h e  other hand, a theory 

Michel l ' s  paper 

The present paper i s  presented i n  t h r e e  independent p a r t s .  I n  t h e  f irst  
This par t  a theorem i s  presented on t h e  superposit ion of Michell s t ruc tu res .  

theorem i s  then used t o  develop s t ruc tures  fo r  two fo rce  systems. I n  t h e  
second pa r t ,  so lu t ions  a r e  presented t o  the  governing equations developed by 
Hemp for t h e  form of t h e  m i n i m u m  volume framework. 
i s  then developed, t h a t  i s ,  t h e  coordinate curves along which t h e  members l i e  
a r e  l a i d  out .  It i s  then shown how c e r t a i n  a r b i t r a r y  functions of t h e  solu-  
t i o n  can be adjusted t o  match a given ex terna l  force  system. I n  t h e  t h i r d  
p a r t ,  two systems of well-known orthogonal coordinate curves, namely, t h e  
dipolar  and t h e  spher ica l  coordinate systems, are se lec ted  for t h e  layout of 
members of t h e  Michell optimum s t ruc tu res .  The corresponding s t r a i n -  
displacement equations incorporating t h e  Michell s t r a i n  c r i t e r i o n  are solved 
t o  give the  displacements i n  terms of corresponding curv i l inear  coordinates.  
Some force systems a r e  i l l u s t r a t e d  as  appl ica t ions  of t h e  two coordinate 
systems i n  t h e  development of Michell optimum s t r u c t u r e s .  

The r e su l t i ng  s t ruc tu re  
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SYMBOLS 

un i t  arc  lengths along a and j3 members 

arc  lengths along a and p members 

magnitude of s t r a i n  i n  any member of a Michell optimum 
s t ruc tu re  

normal s t r a i n s  i n  the curvi l inear  system ( a 7 p 7 y )  

shear s t r a i n s  i n  the  curvi l inear  system ( a J j 3 , y )  

forces  act ing a t  the points of appl icat ion 

forces per  u n i t  length p a r a l l e l  t o  t h e  cc and j3 members 

thickness of the  a 7 p  members 

displacements corresponding t o  t he  curv i l inear  system (aJj3) 

displacements corresponding to the  curv i l inear  system ( a 7 P , y )  

volume of a Michell optimum s t ruc tu re  

curv i l inear  coordinates 

allowable s t r e s s  i n  compression 

allowable s t r e s s  i n  tens ion 

angles made by t h e  a and j3 curves with the  x ax is  

- 
ri 

M I C H E U  CRITERION OF STF2lLN 

The Michell c r i t e r i o n  of s t r a i n  f o r  a minimum volume framework t o  
equi l ibra te  a given force  system s t a t e s  t ha t  t h e  members of the s t ruc tu re  m u s t  
a l l  be s t ra ined  by t h e  same amount (e ) ,  the  s ign depending on the  s ign of t he  
ax ia l  s t r e s s  car r ied  by t h e  member. 

The volume 
forces  F. with allowable s t r e s s e s  bC and a t  i n  compression and tension is  
given by ?,-see r e f .  3 )  

V* of the  minimum volume framework t o  car ry  a system of - 
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- 
where ri denotes t h e  points  of appl icat ions of t h e  forces  Fi and vi denote 
t h e  displacements of these  poin ts .  

This deformation prescr ibed by Michell imposes c e r t a i n  r e s t r i c t i o n s  upon 
t h e  layout of t he  members of a Michell s t ruc tu re .  
work, t h e  members follow t h e  p r inc ipa l  d i r ec t ions  of s t r a i n .  
carrying loads of t h e  same s ign  meet a t  a node, t he re  i s  no r e s t r i c t i o n  on 
t h e i r  layout s ince  f o r  t h i s  case t h e  Michell deformation is  a pure d i l a t a t i o n  
or contract ion and t h e  p r inc ipa l  axes of s t r a i n  are indeterminate. If a t  a 
node, members carrying loads of opposite s ign  m e e t ,  these  members m u s t  be a t  
r i g h t  angles.  The members of t h i s  c l a s s  of frames form curves of orthogonal 
systems. 

A t  a node of t h i s  frame- 
, 

If m e m b e r s  

SUPERPOSITION O F  MICHELL STRUCTURFS 

In  t h i s  s ec t ion  t h e  indeterminacy of Michell s t ruc tu res  is discussed. 
Then t h e  u t i l i t y  of superposing Michell s t ruc tu res  is  presented. A theorem is 
presented on t h e  superposi t ion of Michell s t ruc tu res  which r e l a t e s  t h e  volume 
of t h e  superposed s t ruc tu res  f o r  t h e  corresponding force  systems t o  t h e  volume 
of t h e  s t ruc tu re  f o r  t h e  r e su l t an t  of t h e  f o r c e  systems. The usefulness of 
t he  superposit ion theorem i s  demonstrated by means of two examples. 

Indeterminacy of Michell Structures  

I n  t h e  development of a Michell s t ruc tu re  t o  equ i l ib ra t e  a given force  
system, t h e  geometry of t h e  layout of t h e  members i s  a l s o  unknown i n  addi t ion  
t o  t h e  forces i n  t h e  members. The problem of determining t h e  s i z e s  of t h e  
members, for a n  optimum member layout,  t o  equ i l ib ra t e  a given force  system 
involves t h e  so lu t ion  of t h e  following equations: 
obtained by considering t h e  equation of an  element da by dp, where a,p are 
t h e  curv i l inear  coordinates; (ii) equations of compat ibi l i ty  of s t r a i n  i n  t h e  
curv i l inear  coordinate system; and (iii) equilibrium conditions along t h e  
boundary. Once t h e  members' s i ze s  are known, t h e  forces  i n  t h e  members a r e  
obtained by specifying t h e  allowable stress i n  t h e  members. 

( i) equilibrium equations 

It i s  seen t h a t ,  f o r  Michell s t ruc tures ,  t h e  areas of t h e  members and 
hence t h e  forces  i n  t h e  members for  a n  allowable stress a r e  obtained from t h e  
deformation pa t t e rn  or kinematics. For a s t a t i c a l l y  determinate s t ruc tu re ,  
t h e  determination of member forces for  a given external force  system requi res  
t h e  so lu t ion  of only t h e  equilibrium equations.  A Michell s t ruc tu re  i s  not 
s t a t i c a l l y  determinate s ince,  i n  addi t ion  t o  equilibrium equations, t h e  
deformation equations are needed t o  determine t h e  forces  i n  t h e  members. 

4 . 



Superposition 

The s t r a i n  pa t t e rn  prescribed by Michell f o r  a minimum volume framework 
is such t h a t  so lu t ions  sa t i s fy ing  t h e  Michell c r i t e r i o n  of s t r a i n  exist only 
f o r  a f e w  spec ia l  cases.  
optimum framework t o  equ i l ib ra t e  a fo rce  system. However, if t h e  fo rce  system 
were resolved i n t o  component fo rce  systems, optimum frameworks could be deter-  
mined f o r  t h e  component fo rce  systems. 
obtained by t h e  superposi t ion of t h e  cons t i tuent  Michell s t ruc tu res  while con- 
t i n u i t y  of displacements between t h e  superposed s t ruc tu res  is  insured. To 
determine whether t h i s  composite s t r u c t u r e  can be used as t h e  optimum s t ruc-  
ture f o r  t h e  given loading i n  t h e  absence of a unique so lu t ion  f o r  t h a t  load 
system, a theorem is proposed which states t h a t  t h e  volume of t h e  composite 
s t ruc tu re  is t h e  same as t h e  volume of t h e  unique s t r u c t u r e  f o r  t h e  given load 
system. This theorem justifies t h e  use of t h e  composite s t ruc tu re  as t h e  
optimum s t r u c t u r e  f o r  the load system considered. 
enunciated, proved, and applied to two fo rce  systems. 

It of ten  happens t h a t  it is not possible  t o  f i n d  an 

Suppose a composite s t r u c t u r e  is 

The theorem w i l l  now be 

- 
Theorem: L e t  Fli, i = 1, 2, 3, denote a se l f - equ i l ib ra t ing  system of 

forces  ac t ing  a t  points  Ti ,  i = 1, 2, 3, and l e t  V 1  denote t h e  - volume of 
- t h e  Michell s t ruc tu re  S1 which equi l ibra tes  t h e  fo rce  system Fii. L e t  
F ~ J ,  j = 1, 2, 4, denote another s e l f - equ i l ib ra t ing  f o r c e  system act ing a t  
points  
S2 which equi l ibra tes  t h e  f o r c e  system F2j.  -Let F3kY k = 1, 2, 3, 4, 
represent  t h e  r e su l t an t  of t h e  fo rce  systems ac t ing  a t  points  
rk, k = 1, 2, 3, 4,  and l e t  denote t h e  - volume of t h e  Michell s t ruc tu re  
S3 which equ i l ib ra t e s  t h e  f o r c e  system F3k. If a s t r u c t u r e  be obtained by 
t h e  superposit ion of t h e  two Michell s t ruc tu res  S 1  and S2 such t h a t  t he re  is 
a compatibi l i ty  of s t r a i n  between t h e  two superposed s t ruc tu res  ( i .e . ,  t he re  
i s  a cont inui ty  of displacements a t  nodes common t o  both t h e  s t ruc tu res ) ,  then 
t h e  volume of t h i s  composite s t r u c t u r e  w i l l  be  V 1  + V 2 .  It i s  proposed, 
then, t h a t  V3 = V1 + V 2 .  

r j ,  j = 1, 2, 4, and V 2  denote - t h e  volume of t h e  Michell s t ruc tu re  

F l i  and F2j - 
V 3  

Proof: Consider a domain D containing t h e  poin ts  Fl, 75 ,  F3, F4. In 
t h i s  domain an orthogonal coordinate system of curves (or systems of curves, 
provided the re  i s  cont inui ty  of displacement along t h e  l i n e s  of junct ion)  
l i nks  points  rl, 1-2, r3, 1-4. The Michell s t r a i n  pa t t e rn  is now imposed on 
t h i s  coordinate system s o  t h a t  t h e  s t r a i n s  along t h e  orthogonal d i rec t ions  are 
+e and t h e  shear s t r a i n  is zero.  Let t h e  displacements a t  t h e  points  rl, 
r2, r,, r4 be 71, y2,.V3, 74, respec t ive ly .  

- - - _  

- 
- 

Now a t  t h e  poin ts  T i ,  i = 1, 2, 3, t h e  system F l i  is made t o  a c t .  The 
corresponding Michell s t r u c t u r e  Sly t o  equ i l ib ra t e  t h e  system Fl iy  w i l l  con- 
s is t  only of those members of t h e  coordinate system t h a t  t ransmit  forces ;  t h e  
remaining members of t h e  coordinate system can be s a i d  t o  have zero area and, 
hence, do not form p a r t  of t h e  s t r u c t u r e  S1. Then t h e  volume V1 of S1 
is  (from Eq. (l)), 

- 
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N e x t ,  a t  
corresponding 
again cons is t  
t h e  s t ruc tu re  

v2 

- 
poin ts  F2, j = 1, 2, 4, t h e  system F2j i s  made - t o  a c t .  The 
Michell s ruc ture  S2, t o  equ i l ib ra t e  t h e  system Fzj ,  w i l l  
only of those members t h a t  t ransmit  forces .  The volume V2 of 
S2 is  given by 

The system F3ky k = 1, 2,  3 ,  4, is now made t o  a c t  a t  the  points  Fk. 
The volume .- V3 of t h e  corresponding Michell s t r u c t u r e  Ss, t o  equ i l ib ra t e  the  
system F 3 k ~  i s  given by 

- - 
Now s ince  F3k is t h e  r e su l t an t  of systems F l i  and Fz j ,  it follows t h a t  

( 5 )  
- - - 
F3k = F l i  + F2j 

t h a t  is , 

- 
Structures  
displacements v1 and v2. Hence t h e  s t ruc tu res  S1 and S2 can be superposed. 
The r e su l t i ng  composite s t ruc tu re  w i l l  have t h e  volume (Vl  + V 2 ) .  From equa- 
t i o n s  ( 2 ) ,  ( 3 ) ,  (41, and ( 5 ) ,  it is seen t h a t  t h e  volume 
- s t ruc tu re  S3 which equi l ibra tes  t h e  r e su l t an t  of t h e  force  systems F l i  and 
F2j 
superposing - t h e  two Michell s t ruc tu res  S1 and S2 corresponding t o  t h e  load 
systems 

S1 - and S2 - have common poin ts  rl and & at  which they have equal 

V3 of t h e  Michell 

i s  equal t o  t h e  volume ( V l  + V2) of t he  composite s t ruc tu re  obtained by 

F l i  and F2j; t h a t  is, 

v3 = v1 + v, ( 7 )  

6 



Application of  t h e  Superposition Theorem 

The theorem i s  now used t o  develop optimum s t ruc tu res  for  t h e  load 
systems of f igures  l ( a )  and 2 ( a ) .  
ing a pure shear beam-type loading, i s  resolved i n t o  two cons t i t u t ive  systems, 
as shown i n  f igu re  l(b). Each system lends i t s e l f  t o  a so lu t ion ,  i n  t h e  sense 
t h a t  t h e r e  i s  a d e f i n i t e  Michell s t r u c t u r e  t o  equ i l ib ra t e  each system. 
s t ruc tu res  are shown independently i n  f igu re  l ( c )  and are combined as shown i n  
f igu re  l ( d )  t o  give t h e  optimum s t r u c t u r e  f o r  t h e  load system under 
consideration. 

The load system of f i g u r e  l ( a ) ,  represent-  

These 

P 

( a )  Force system 1 (pure shear beam-type loading) .  

P P 

(b) Component systems f o r  above force system. 

( c ,  Michell s t r u c t u r e s  for  component systems 

( d )  Composite s t r u c t u r e  (optimum s t r u c t u r e  
f o r  t h e  above force systems) .  

Figure 1.- Michell s t r u c t u r e  f o r  a pure shear 
beam-type loading. 
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The volume of each ind iv idua l  un i t  i s  (see ref. 9) 

- - e! (& + &) 
2 

P 2P P 

2P 2P 

( a )  Force system 2 (simple overhang beam-type 
loading ) . 

VAV 2P P P 2P 

(b )  Component systems for above force system. 

( c )  Michell s t ruc tures  f o r  component systems. 

(a)  Composite s t r u c t u r e  (optimum s t r u c t u r e  
for  above force  system). 

The volume of t h e  Michell 
s t r u c t u r e  ( f i g .  l ( d ) )  t o  car ry  t h e  
load system of f igure  l ( a )  i s ,  
then, 

v* = 2vc 

=nM(&+ &) (9) 

The load system of f i g -  
ure  2 ( a )  i s  resolved as shown i n  
f igure  2 ( b ) .  The Michell s t r u c -  
t u r e  for each component load 
system i s  shown i n  f igu re  2 ( c ) .  
The un i t s  are combined as shown 
i n  f i g u r e  2( d) . 
each uni t  i s  ( see  ref.  9) 

The volume of 

The volume of t h e  Michell s t r u c -  
t u r e  ( f i g .  2(d)) t o  car ry  the  load 
system of f igu re  2 ( a )  i s  

Figure 2.-  Michell s t r u c t u r e  for an overhang 
beam-type loading. 
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v" = 3vc 

THE DEVELOPMENT OF A SYSTEM OF COORDINATE CURVES FOR 
MEMBER LAYOUT OF A MICHELL OFTIMUM STRUCTURE 

The governing equations for  t h e  form of the  orthogonal coordinate curves 
and t h e  equations of equilibrium of a curvi l inear  element are presented i n  
t h i s  sect ion.  These equations have been derived by Hemp (ref .  5) ;  however, 
t h e i r  der ivat ion w i l l  be b r i e f l y  represented t o  maintain cont inui ty  of thought 
A solut ion i s  then obtained t o  Hemp's governing equations which d i c t a t e  t h e  
form of t h e  orthogonal coordinate system t h a t  s a t i s f i e s  t h e  condition of com- 
p a t i b i l i t y  fo r  t h e  Michell c r i t e r i o n  of s t r a i n  i n  two dimensions. This so lu-  
t i o n  gives the  layout of coordinate curves which cons t i t u t e  t he  l i n e s  of 
pr inc ipa l  s t r a i n  along which t h e  members of t h e  corresponding Michell s t ruc -  
t u r e  l i e .  These curves a r e  then  enclosed within a su i t ab le  boundary by match- 
ing ,  at t h e  boundmy, t h e  forces i n  t h e  members of t h e  s t ruc tu re  and t h e  
ex terna l  forces  ac t ing  on t h e  s t ruc tu re  (one ge t s  t h e  nature of external  
forces  on t h e  boundary of t h e  s t r u c t u r e ) .  
force  system which t h e  developed Michell s t ruc tu re  ( t h e  members l i e  along t h e  
coordinate curves and a r e  represented by t h e  so lu t ion  obtained from Hemp's 
governing equations fo r  t h e  form of Michell s t ruc tu res )  equi l ibra tes .  
Inversely,  one can say t h a t  t h e  so lu t ion  ( i . e . ,  a Michell s t ruc tu re )  has been 
obtained fo r  t h i s  force system. 

Ind i r ec t ly ,  then ,  one obtains t h e  

Equations Governing t h e  Form of t h e  Coordinate Curves 

The ou t l ine  of t h e  development of Hemp's governing equations for  t h e  
form of t h e  Michell optimum s t ruc tu re  i s  now presented. (For d e t a i l s  see 
sec t ion  3 of r e f .  5 . )  Let x = x(a,P), y = y(a,P) be a set of orthogonal 
coordinate curves representing l i n e s  of p r inc ipa l  s t r a i n .  The, parametric pa i r  
( c L , ~ )  represents  curv i l inear  coordinates i n  t he  plane of t he  rectangular 
Cartesian coordinate system. The functions x(a,p) and y(a ,P)  a r e  continuous 
and have f irst  and second der ivat ives  with respect  t o  a and P .  Along 
a-coordinate curves, a va r i e s  and p i s  constant; along P-coordinate 
curves, p var ies  and a i s  constant.  Pos i t ive  d i rec t ions  along both of 
these  curves a r e  those along which a and p a r e  increasing.  The a r c  lengths 
ds l  and ds2 along a and /3 curves a r e  given by 
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where 

and 

Let $1 and q2 represent t h e  angles made by t h e  pos i t ive  tangents t o  
a and p curves, respect ively,  with t h e  x ax is  such t h a t  

It follows t h a t  

Now 
cos 5 = COS($2 - $1) 

Also, from equations (14) and (17) the  following r e l a t i o n  can be shown t o  
ex is t  between A, B, and T3: 

(18) 
For Yj = x/2, t h i s  r e l a t i o n  becomes 

'For d e t a i l s  r e f e r  t o  appendix A of reference 5. 

10 



I n  t h e  curv i l inear  coordinate system, t h e  deformation i s  character ized by t h e  
s t r a i n s  em, e p p ,  e@. The expressions for t h e  s t r a i n s  a r e  given by ( r e f .  5, 
P. 59) 

1 

where u and v a r e  t h e  displacements along a and P curves, respec t ive ly .  

I n  the  deformed s t a t e ,  t h e  a r c  lengths ds l  and ds2 a r e  increased by 

fiEklace A, B, and Yj. by A ( l  + ea), B(l + e 

- 
1 + e a  and 1 + e respec t ive ly ,  and t h e  angle w i s  deformed from g/2 
to (~/2) - a@. 
(71/2) - 2aP, respect ively,  i n  equation (18); i f  t h e  r e su l t i ng  gtuat ion i s  
developed co r rec t ly  t o  t h e  first order of s t r a i n ,  t h e  equation of compatibil- 
i t y  of s t r a i n  i s  obtained as follows: 

) ,  and 

Now t h e  Michell c r i t e r i o n  of s t r a i n ,  for  members carrying s t r a i n s  of opposite 
sign, i s  defined by 

e m = e ,  epp  = -e , e,@ = 0 (22) 

For t h i s  s t r a i n  condition, t h e  equation of compatibi l i ty  of s t r a i n  becomes 

It follows from equations (19) and (23) t h a t  
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where 
a t i v e s .  The following transformation i s  now introduced: 

Fl(a), F2(p) a r e  a r b i t r a r y  functions and F l ( a ) ,  F2(p) a r e  t h e i r  der iv-  

a = 9lG) , P = 92(P) (26) 

where 91, 92, cpi, and 94 are continuous funct ions.  Further,  cpl and (p2 a r e  
chosen so t h a t  

where FT', F;l are t h e  invers? functions of F1, F2 and t h e  upper or  lower 
s ign  i s  taken accordingly as F1F2 i s  pos i t i ve  or negative.  The transform 
of equations (25) can now be wr i t ten  i n  terms of a and p as follows: 

These are t h e  governing equations for t h e  a rc  lengths  A and B of t h e  system 
defined by equations (12) . 

Now, t h e  angles $l and $2, defining t h e  d i rec t ions  of a and p cvzves, 
a r e  obtained from equations (14) with E = s / 2 ,  (17) and (28) as follows: 

(29) $2 = + a + p 
2 $1 = a +  P , 

I n  order t o  se l ec t  a s e t  of orthogonal coordinate curves (12) t h a t  s a t i s f y  
t h e  s t r a i n  conditions (22),  t h e  corresponding rates of changes of a r c  lengths 
A and B have t o  s a t i s f y  equations (28) .  When A, B have been found, equa- 
t i o n s  (12), along with equations (29),  can be employed t o  determine t h e  
equations of t h e  l i n e s  of pr inc ipa l  s t r a i n s .  

Equations of Equilibrium 

The equations derived by Hemp (appendix B, ref .  5) fo r  t h e  equilibrium 
of a curvi l inear  element da by dp a r e  now presented. Let  tl and t 2  
denote t h e  thicknesses of t h e  a and P me&ers. Also, l e t  T1, T, be t h e  
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forces  per un i t  length p a r a l l e l  t o  t h e  a and p curves and S be t h e  shear 
per uni t  length.  From t h e  equilibrium of a curv i l inear  element du by dp, t h e  
following equations are obtained: 

For Michell c r i t e r ion ,  t h e  shear stress equals zero. Further, from equa- 
t i o n s  (22) it follows t h a t  

T 1  = G t t l  , T 2  = 0 ~ t 2  (31-1 

and hence the  equations of equilibrium can be wr i t ten  as follows: 

Determination of a System of Coordinate Curves and t h e  Development 
of t h e  Corresponding Michell Optimum Framework 

A so lu t ion  i s  now sought t o  t h e  governing equations (28) .  Hemp has 
obtained a f e w  so lu t ions  i n  t h e  form of c e r t a i n  func t ions  fo r  t h e  a r c  lengths 
A and B and has presented some layouts ( i . e . ,  coordinate curves) fo r  t h e  
members of t h e  Michell optimum s t ruc tu res .  Herein, solut ions t o  t h e  govern- 
ing equations a r e  obtained i n  terms of d i f f e ren t  functions f o r  A and B, which 
then  give us a d i f f e ren t  layout ( i . e . ,  a s e t  of coordinate curves) for  t h e  
members of a Michell s t ruc tu re .  This layout,  then, gives  Michell s t ruc tu res  
which can equi l ibra te  new force  systems; thus,  solut ions (Michell s t ruc tu res )  
a r e  obtained f o r  these  new systems. To determine a system of coordinate 
curves t h a t  s a t i s f y  t h e  Michell c r i t e r i o n  of s t r a i n  (22) ,  equations (28) have 
t o  be solved. The following functions fo r  t h e  uni t  a r c  lengths A and B 
s a t i s f y  equations (28) : 

I A = 4 cos(a  + p)  

B = 4 s i n ( u  + p )  

Equations (15) ,  ( 2 9 ,  and (33) then g ive  

(33) 

= s i n  2(u + p )  + 2u + c ~ ( P )  



where Cl(j3) is a n  a r b i t r a r y  function of j3 Also, 

x = cos q2 ds2 = -4s sin2(a + p)dp 

= -2p + s i n  2(a + P )  + ~ 2 ( a )  

where C 2 ( a )  i s  a n  a r b i t r a r y  function of a .  On ident-ifying t h e  two expres- 
s ions  f o r  x, it i s  seen t h a t  C l ( p )  i s  indeed -2p and Cz(a) i s  2a- Hence, 
t h e  expression f o r  x i s  given by 

x = 2(a - p )  + s i n  2 ( u  + p )  ( 34) 

S i m i l a r  l y  , 
y = -cos 2(a + p )  (35) 

Now, eliminating a and p ,  t h e  Cartesian forms of t h e  u and p curves ( repre-  
senting l i n e s  of  p r i n c i p a l  s t r a i n )  f o r  -1 < - -  y < 1 are, respectively,  

I x = -4p + cos-l(-y) + n , a curves 

I x = 4a - cos-l(-y) + , j3 curves 

The above equations represent t h e  coordinate curves f o r  t he  layout of t h e  
Michell s t ruc tu re .  The curves ( i l l u s t r a t e d  i n  f i g .  3 )  are enclosed i n  a 
rectangular domain -1 < y 5 1, -n 5 x 5 n ,  and can be used t o  solve plane 
stress problems f o r  reFtangular s t r i p s  loaded with s u i t a b l e  self  -equi l ibra t ing  
forces .  The a and p curves are i n  tension and compression, respec t ive ly .  
These tension and compression members are indicated i n  f igure  3 .  From equa- 
t i o n s  (15)  t h e  angles $l and $2 made by t h e  a and p curves with t h e  x 
axis are given by 

fGFx L 

- x  
T 

t 

Figure 3.- Coordinate curves forming a Michell s t r u c t u r e  within a rectangular  domain. 
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cos $1 

(37) 

The areas of t h e  members ( i . e . ,  thicknesses tl and t 2  of t h e  u and P 
members) of t h e  s t r u c t u r e  are now determined from t h e  equilibrium of a curvi-  
l i n e a r  element of t h e  s t r u c t u r e  (eqs .  ( 3 2 ) )  and from t h e  fo rce  equilibrium a t  
t h e  boundary. If a t  = a = -ac i n  t h e  equilibrium equations (32) and equa- 
t i o n  (34) i s  used, t h e  equilibrium equations can be wr i t ten :  

\ 

The solut ion t o  t h e  above equations i s  given by 

where f ( x )  and g (x )  are a r b i t r a r y  functions of  x .  It i s  seen t h a t  y = 1 
presents a s i n g u l a r i t y .  
t o t a l  force equilibrium on t h e  boundary. 

The functions f ( x )  and g (x )  are determined from t h e  

The v a r i a t i o n  of t h e  forces  i n  t h e  s t ruc tu re  f o r  Ioc] = l a t l  = o i s  
given as: ( i )  The t a n g e n t i a l  force per un i t  length (TV) i s  proportional t o  

where t l  and t2 are given by equations (39);  (ii) t h e  normal force  per un i t  
length p a r a l l e l  t o  t h e  x axis (Tx) i s  proportional t o  

(iii) t h e  normal fo rce  per un i t  length p a r a l l e l  t o  t h e  
po r t iona l  t o  

y axis (Ty) i s  pro- 

tl s i n  $1 - t 2  cos $1 = t l  (42) 

. . . . -. - ... ... . . - - . ._ . - . ._ _. I 



Y 

Figure 4 . -  Coordinate curves forming a Michell 
s t r u c t u r e  within a domain enclosed by a, f3 
curves and a y ord ina te .  

Although t h e  ex terna l  forces  
ca r r i ed  by t h e  s t ruc tu re  should be 
self -equi l ibrat ing,  t h e i r  d i s t r i b u -  
t i o n  i s  governed by t h e  d i s t r i b u -  - 

t i o n  of T , Ty, Tw (eqs.  (40) ,  
( 4 u ,  (42)8.  

The above development shows 
how t h e  system of coordinate curves 
under considerat  ion develops t h e  
Michell optimum s t ruc tu re  fo r  a 
rectangular domain under a system 
of externa l  fo rces .  These coordi-  
nate curves could a l s o  be enclosed 
between a n  a curve (say p = 0 ) ,  
a p curve (say a = IC /&) ,  and a 
y ordinate  (say x = 0 ) .  When 
thus bounded, as shown i n  f i gu re  4, 
a concentrated force  P a t  a=z/4,  
B = o ( i . e . ,  a t  x = 1 + ( s r / 2 ) ,  
y = 0) can be equi l ibra ted  by means 
of normal and t a n g e n t i a l  forces 
d i s t r ibu ted  along t h e  y ordinate  
x = 0 .  

Al te rna t ive ly ,  t h e  following 
so lu t ions  t o  equations (29) can be 
had : I I A = 4 s i n ( a  + p )  

B = -4 c o s ( a  + p )  
(43) 

The equations for these  curves i n  
a rectangular Cartesian coordinate 
system a r e  given by 

I y = 4u - cos -q -x )  - d E - z  

y = 4p + cos- l ( -x)  - 4- 
(43a) 

The corresponding curves are i l l u s -  
t r a t e d  i n  f igure  5 .  I n  nature, 
t h i s  system of curves i s  t h e  same 
as  t h e  one considered e a r l i e r  
(given by eqs.  (33) )  except fo r  a 
90' clockwise ro t a t ion  about t h e  
o r i g i n .  

Figure 5 . -  Coordinate curves forming a Michell 
s t r u c t u r e  within a rectangular  domain. 
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CONSIDERATION OF TWO SPECIFIC ORTHOGONAL COORDINATE SYSTEMS 
FOR THE ME3BER MYOUT O F  MICHELL OFTIMUM STRUCTURES 

Two s p e c i f i c  orthogonal coordinate systems - t h e  dipolar  and t h e  
spher ica l  - are se lec ted  f o r  t h e  member layout of Michell optimum s t ruc tu res  
fo r  each system, and t h e  strain-displacement equations (20) a r e  solved fo r  
t h e  displacements, with t h e  s t ra ins  e m ,  epp, and eap corresponding t o  t h e  
Michell s t r a i n  c r i t e r i o n .  The system of curves i s  enclosed within some 
regular boundaries and a se l f - equ i l ib ra t ing  system of forces  i s  made t o  a c t  
along t h e  boundary. 
force  system. 
t i o n  (1) since  t h e  displacements of t h e  points  of appl ica t ion  of t h e  forces  
a r e  determined. Examples of some force  systems are presented as appl icat ions 
of t h e  coordinate systems f o r  member layouts of t h e  Michell optimum 
frameworks. 

A Michell optimum s t ruc tu re  then  obtains fo r  t h e  se lec ted  
The volume of t h i s  s t ruc tu re  can now be obtained from equa- 

The Dipolar Coordinate System 

The dipolar  coordinate system, f igu re  6, i s  defined by t h e  following 
transformation : 

a s i n  P a s inh  a 

= cosh a - cos p x =  
cosh a - cos B ' ( 44) 

where ( c L , ~ )  represent  curv i l inear  coordinates i n  t h e  plane of t h e  rectangular 
coordinate system and a i s  a constant parameter. The corresponding uni t  
a r c  lengths A and B a r e  determined from equations (13) and a r e  obtained as 

a 
cosh a - cos P 

A = B =  (45) 

For t h e  above values of A and By t h e  equation of compatibi l i ty  of s t r a i n s ,  
equation (21) , can only be s a t i s f i e d  i f  (ecLa - epp) i s  zero. It follows t h a t  
t h i s  system only admits of Michell s t r a i n s  of t h e  same s ign .  The correspond- 
i n g  Michell c r i t e r i o n  fo r  s t r a i n s  i s  taken as 

ea = epp = +e , eap = 0 

Since t h i s  system can only admit Michell s t r a i n s  of t h e  same sign, t h e  
r e su l t i ng  layout of t h e  members w i l l  g ive a n  a l l - t ens ion  or a n  a l l -  
compression s t r u c t u r e .  The coordinate curves, along which t h e  members w i l l  
l i e ,  d i c t a t e  t h e  na tura l  boundaries and t h e  force  system t h a t  can be equi- 
l i b r a t e d .  Inversely t h e n ,  a Michell s t ruc tu re  i s  obtained fo r  t h a t  force  
system. The displacements of t h e  system (obtained by solving t h e  s t r a i n -  
displacement equations f o r  t h e  s t r a i n  system of eq. (46) )  give t h e  displace-  
ments of t h e  points  of appl ica t ion  of t h e  forces  from which t h e  weight of t h e  



Figure 6. - The dipolar  coordinate system. 

s t r u c t u r e  i s  determined. Hence, t h e  strain-displacement equations f o r  t h e  
system w i l l  now be solved for t h e  s t r a i n  p a t t e r n  of equations (46 ) .  

The expressions f o r  s t r a i n s  i n  t h i s  coordinate system are obtained by 
subs t i t u t ing  t h e  expressions for  A and B from equation (45) i n t o  equa- 
t i o n s  ( 2 0 ) .  Then, by employing t h e  Michell c r i t e r i o n  defined by equa- 
t i o n s  (46), t h e  d i f f e r e n t i a l  equations f o r  t h e  displacements u and v along 
t h e  a and p curves, respectively,  are obtained as 
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cosh a - cos p au s i n  p v = i e  aa a 

- -  u = +e a aB 
- - -  I .. 

a 

cosh a - cos j3 av s inh  a 
. .  

a 

s i n h  a cosh a - cos p au s i n  P - + v  + - + u - = o  J cash a - cos p av 
. 

a aa a a aP a 

When $ = cosh a - cos p, t h e  above system of equations i s  r ewr i t t en  as 

av a$ $ - - - u = +ae 
dB 30~  

From equations (48a) and (48b) , 

Now equations (48c) and (49) give 

(47) 

Multiplying equation (48a) by $? d i f f e r e n t i a t i n g  with respect  t o  a, e l i m -  
ina t ing  (a /aa)(W) by means of equation (48c),  and employing t h e  f irst  of 
equations ( 5 0 )  y i e l d s  a second-order d i f f e r e n t i a l  equation t h a t  contains  
der iva t ives  of u with respec t  t o  p only: 

Similarly,  from equations (48b) , (48c),  and t h e  second of equations ( 5 0 ) ,  

, . .  .. 

1.9 
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When t h e  general  so lu t ions  t o  
r e su l t i ng  expressions f o r  t h e  

f l ( a ) s i n  P 

equations (51) and (52) a r e  obtained, t h e  
displacements u and v must be of t h e  form 

+ f 2 ( a )  (cos P - sech a) F ae  tanh  a 1 

f o r  a r b i t r a r y  funct ions f l (a )  f2(a), f 3 ( P )  and f*(P). Equations (ma-e )  
now determine t h e  form of t h e  a r b i t r a r y  functions and y i e l d  f i n a l l y :  

( k  s inh  a + 2 cosh a ) s i n  /3 + (yae s inh  a + n cosh a )cos  J3 - n 
_I_ ~ - __ - . - - . 

- -  1 u(a,P) = 
$(..,PI 

( 54) 

( n  s i n  B - 2 cos P)s inh a + ( T a e  s i n  p - k cos B)cosh a + k 
_ . _ _ _  v(a,P) = 

I+, P )  

where k, 2 ,  and n a r e  a r b i t r a r y  constants.  

Equations (54) form t h e  general  so lu t ions  to t h e  system of equa- 
t i o n s  (48a-e) or (47) .  A general  so lu t ion  has been obtained for  t h e  displace-  
ments of t h e  dipolar  coordinate system for t h e  Michell s t r a i n  condition 
defined by equations (46) .  If t h e  system of curves i s  enclosed within s u i t -  
ab l e  boundaries, a system of forces  can be equi l ibra ted .  Then t h e  constants 
i n  solut ions (54) can be determined from t h e  physical  conditions of t h e  
problem. This w i l l  now be demonstrated with respect  t o  two appl icat ions of 
the dipolar  system i n  t h e  development of Michell optimum s t ruc tures .  

Application--l-.- For t h e  f irst  appl icat ion,  a region bounded by two non- 
concentric c i r c l e s  a = al and a = a2 
t h e  r e su l t i ng  s t r u c t u r e  i s  taken t o  consis t  of uniform externa l  and i n t e r n a l  
pressure p1 and p2 ac t ing  on t h e  p boundaries a = al, a = a2, respec- 
t i v e l y ,  as shown i n  t h e  f igure .  Both s e t s  of members a r e  i n  compression. The 
general  solut ions f o r  displacements for  t h e  per t inent  s t r a i n  system of 
e,, = -e = epp, eap = 0, a r e  given by 

is  taken (see f i g .  7 ) .  The loading on 
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a e  s inh  a cos P + k s inh  a s i n  P + 2-cpsh a s i n  P 
~. 

$ @ $ 
u(a,B) = - 

COsh a COS P - 1 
lJ 

+ n - -  

} (55) 

a e  s i n  P cosh a k ( 1  - cos P cosh a)  2 cos p s inh  a + - 
$ $ $ 

v(a,P) = - 

s inh  a s i n  P + n 

Figure 7 . -  Application 1 of t h e  dipolar  coordinate system: two nonconcentric c i r c l e s  under 
ex terna l  and i n t e r n a l  normal pressure - a candidate f o r  en t ry  body configurat ion.  

The boundary conditions are as follows: 

(i) A t  P(a = w )  for any P direct ion,  u = 0. 

(ii) Along AB ( i . e . ,  for P = 0 or rl and any a )  due t o  t h e  symmetry 
of l i n e  AB, t h e  displacement v = 0. A t  (a,P = fi) , t h e  condition v = 0 
gives (from eqs . (55) ) 
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-2  s inh  a 
1 + cosh a 

k =  

A t  (a,P = 0 ) ,  condi t ion v = 0 gives 

2 s i n h a  
k =  

1 - COsh a 
( 5 7 )  

However, s ince  k and 2 itre constants,  it follows, from equations (56) and 
(57 1, t h a t  

k = Z  = O  (58) 

A t  ( a  = m,p), t h e  condition u = 0 gives 

n = -ae (59) 

From equations (55)  through (59) it follows t h a t  t h e  displacements correspond- 
ing t o  t h e  s t ruc tu re  and i t s  loading a r e  given by 

Once t h e  displacements are known, t h e  so lu t ion  t o  t h e  problem i s  complete, for 
i t s  volume can b e  obtained by means of equation (1). 
( f o r  loc [  = lot1 = o )  

The volume i s  given by 

where 
and u i s  given by equation (60). 

B, obtained by using equations (l3), i s  given by B = (a/cosh CL - COS p) 

Since t h e  appl ica t ion  of t h e  dipolar coordinate system i n  obtaining t h e  
Michell s t r u c t u r e  for t h e  loading i l l u s t r a t e d  i n  f i g u r e  7 has been presented, 
it would be i n t e r e s t i n g  to 'cons ider  some p r a c t i c a l  use of t h a t  load system. 
It i s  conceivable t h a t  such a configuration could be used for an entry body. 
When thus employed, t h e  inner c i r c l e  could represent  t h e  payload compartment 
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which i s  displaced with respect  t o  t h e  geometric center  of t h e  bo*; t h e  
external and i n t e r n a l  pressures,  then, would represent t h e  aerodynamic forces  
and t h e  i n e r t i a  forces ,  respect ively.  The a members form t h e  s t r u c t u r a l  
members t o  carry t h e  forces  due t o  t h e  aerodynamic loading. Also, a t  impact 
t h e  a members could buckle and thus a c t  as energy absorbers. 

A E l i c a t i o n  2 ( s e e  f i g .  8) .- Herein t h e  Michell s t ruc tu re  i s  bounded by 
a curves P = PO and P = TC (or t h e  y a x i s ) .  The loading cons is t s  of a '  
d i s t r ibu ted  pressure (pl)  loading along PQ ( p  = TC) and reacted by normal 

PI applied pressure 

Y 

'ive pressure 

Figme 8 .  - Applicat ion 2 of t h e  dipolar  coordinate system: t ransmission of appl ied pressure 
from one surface t o  another of g r e a t e r  sur face  a rea .  

pressure (p2)  along t h e  surface p = Po. All t h e  members, t h a t  i s ,  t h e  a 
and t h e  p s e t s ,  are i n  compression. The Michell s t r a i n  c r i t e r i o n  i s  again 
em = -e = epp, eap = 0 and t h e  corresponding general  expressions for t h e  
displacements u and v a r e  given by equations (55 ) .  The boundary conditions 
a r e  as  follows : 

(i) Along a = 0, for  a l l  P ( ? . e . ,  along t h e  x ax is )  u = 0 due t o  
symmetry. 

(ii) Along P = rl ( i . e . ,  t h e  y a x i s ) ,  t h e  displacement v i s  zero. 

These boundary conditions give 

Thus, t h e  displacements a r e  given by 
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1 ae s i n  p cosh a 
v(ayP) = 

The volume of t h e  s t r u c t u r e  is  now given by ( f o r  loci = 1.1 = a) 

where A = (a/cosh a - cos p )  and v is  obtained from equations (63). 

It i s  conceivable t h a t  t h i s  form of configurat ion could be used as a 
bearing s t ruc tu re  fo r  a load ac t ing  on a weak material or s o i l  ( i . e .  , one 
having a low bearing va lue ) .  
which t h e  mater ia l  or s o i l  forces  ac t  i s  obtained from t h e  geometry of t h e  
dipolar  system f o r  t h e  corresponding applied pressure d i s t r i b u t i o n  along 
j3 = rc. 
sequently t h e  p o s s i b i l i t y  of s l i p ,  and hence l a rge  sett lement i s  reduced. 
The s t ruc tu re  then e f f i c i e n t l y  d i s t r i b u t e s  t h i s  load from t h e  bearing a rea  
PQ over a la rger  area (along t h e  surface of t h e  P = B O  curve) and hence 
reduces t h e  tendency of l a r g e  deformations i n  t h e  material. 

The shape of t h e  outer  boundary (j3 = Po) along 

Along t h i s  boundary ( p  = Po) , no shearing forces  a r e  developed; con- 

The Spherical  Coordinate System for  Member Layout 

The spher ica l  coordinate system given by t h e  transformation 

x = a s i n  j3 cos y 

y = a s i n  p s i n  y 

z = a cos p 

where t h e  curv i l inear  coordinates a ,  8 ,  y are i l l u s t r a t e d  i n  f igure  9, i s  
proposed for  t h e  member layout of a Michell optimum framework. Expressions 
fo r  displacements a r e  obtained fo r  a Michell s t r a i n  c r i t e r ton ;  they represent 
t h e  general  so lu t ion  of t h e  strain-displacement equation for a Michell s t r a i n  
c r i t e r i o n  i n  a three-dimensional spher ica l  coordinate system. Any s e l f  - 
equi l ibra t ing  force  system can now be made t o  a c t  upon a domain enclosing a 
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Ill? 

spher ica l  system of curves, t h e  proper boundary conditions on t h e  displace-  
ments could be imposed, and t h e  volume of t h e  s t r u c t u r e  could then be 
determined. 

(a 
B curve 

and y constants) 

Figure 9. - Spherical  coordinate system. 

The parameters of t h e  coordinate system are given by 

with h2 and & s imi l a r ly  given by d i f f e r e n t i a t i o n  with respect  t o  p and y ,  
respect ively.  
a r e  obtained as follows: 

For t h e  system, represented by equations (65) ,  t h e  parameters 

The corresponding strain-displacement equations are given by (see  p. 54, 
ref .  11) 
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cos p 
a s i n  B 

+ 

where ua, up, “r a r e  t h e  displacements along t h e  a,  p ,  and y direct ions,  
respect ively . 

For a Michell s t r a i n  c r i t e r i o n  it i s  necessary t h a t  

(69) e, = +e , egg = +e , eyy = +e , e,p = 0 = epy - - eya 

The equations (68) a r e  now solved for t h e  following general  s t r a i n  system: 

It w i l l ,  however, be shown t h a t  equations (68) a r e  only solvable for c e r t a i n  
r e l a t i o n s  between 
some of t h e  eight  cases shown i n  equations (69) and w i l l  be t h e  conditions of 
compatibil i ty of s t r a i n .  For t h e  s t r a i n  system of equation ( T O ) ,  t h e  s t r a i n -  
displacement equations (68) a r e  as follows : 

em, e g g ,  and eyy. These r e l a t i o n s  w i l l  then eliminate 
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Equations (Tla), (Tlb) ,  and (7 l f )  contain only displacements % and up 
and y ie ld  t h e  general  i n t eg ra l s  

where C l ( y ) ,  C 2 ( y ) ,  and Z(7) a r e  a r b i t r a r y  functions of y ,  and t h e  primes 
indicate  d i f f e r e n t i a t i o n  with respect  t o  y .  When the  der iva t ives  of uy 
have been eliminated between equations (7ld) and (Tie), it i s  seen t h a t  t h e  
function C l ( y )  i s ,  i n  f a c t ,  a constant.  Equation ( 7 l c )  can now be in tegra ted  
t o  y ie ld  

u y ( a , p , y )  = [ (err  - e,)sin P - (ecLa - epp)P cos ~ 3 a r  

with A ( a , P )  a r b i t r a r y .  Now equation (71e) shows t h a t  

C 2 ( Y )  = D1 s i n  7 + D2 cos y + D3 
and 
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where D1, D2, and D3 are constants ,  and k i s  an a r b i t r a r y  function of P .  
Fina l ly ,  equation (7 ld )  shows t h a t  

2(7) = D4 sin 7 + Ds COS + De (77) 

where D4, D5, D6 a r e  a r b i t r a r y  constants.  Moreover, equation ( p d )  can be 
s a t i s f i e d  i f  and o n l y  i f  

ePP - em = 0 

which i s  t h e  compatibi l i ty  condition f o r  t h e  d i f f e r e n t i a l  system (p). 
t h e  a r b i t r a r y  constants  renamed, t h e  general  so lu t ion  representing t h e  
displacements i s  wri t ten:  

u,(a,P,~) = e,a - A cos P + (B cos y + C sin y ) s i n  P 

uP(a,P,7) = A s i n  P -k ( C  cos P +Ea)sin y + ( B  cos P - Da)cos y 

uy(a,p,y) = a y ( e y y  - e,)sin P + FCL sin P + (DCL cos P - B)sin y 

+ (Ea. cos P + C)cos y 

From equation (78) it i s  seen t h a t  
as w e l l  as i n  s ign el iminat ing four  of t he  e igh t  cases of equation (69) .  
four  possible  cases are as follows: 

e, and epp have t o  be equal in magnitude 
The 

+e +e +e 
+e +e -e 
-e -e +e 
-e -e -e 

The t e r m  e y y  - e, 
four  cases.  

i n  equation (79c) provides f o r  handling any of t he  above 

The formal so lu t ion  of t h e  spher ica l  coordinate system is  now complete; 
f o r  once t h e  displacements a r e  lmown, and t h e  volume can be obtained fo r  a 
set of se l f -equi l ibra t ing  ex terna l  forces .  

The so lu t ion  given by equations (79) f o r  considering appl icat ions t o  - some load systems shows t h a t  when 
t h e  solut ions f o r  a uniform r a d i a l l y  loaded spher ica l  s t ruc tu re .  When 
ey7 - - -emJ uy (see eq. (79c))  i s  a multivalued expression t h a t  leads t o  an 
in t e re s t ing  appl ica t ion .  Consider a s t ruc tu re  with a spher ica l  boundary 
surface.  L e t  cu t s  be made along two longi tudina l  planes,  separated by a 

eyy  - em, equations (79) can represent  
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small angle dy, up t o  t h e  a x i s  of t h e  sphere. If t h e  port ion of t h e  sphere 
enclosed between these  two planes is  removed and the  cut  surfaces  are 
rejoined,  a s t ruc tu re  with i n i t i a l  s t r e s s e s  is  obtained. Thus, when 
eyy  - -em, equations (79) can represent t he  so lu t ion  fo r  a s t ruc ture  with a 
spher ica l  bounding surface with i n i t i a l  locked s t r e s s e s  i n  it ( i .e . ,  a 
pres t ressed  spher ica l  s t ruc tu re )  and under a su i t ab le  force system. 

- 

CONCLUDING REMARKS 

The Michell s t r a i n  c r i t e r i o n  has been successful ly  applied t o  develop 
minimum volume s t ruc tu res  fo r  a va r i e ty  of domains t o  equ i l ib ra t e  some 
in t e re s t ing  force systems of s ignif icance t o  t h e  aeronautics and space 
industry.  

The indeterminacy of Michell s t ruc tu res  w a s  discussed i n  t h e  first sec- 
t i o n .  The u t i l i t y  of t h e  superposit ion theorem f o r  Michell s t ruc tu res  was 
presented, and t h e  theorem w a s  proved and applied t o  t h e  two load systems of  
f i gu res  1 and 2.  The superposit ion theorem now makes it possible  t o  solve 
a broader spectrum of force systems which by themselves do not have a unique 
solut ion ( i . e . ,  do not lend themselves t o  a unique optimum s t ruc tu re )  bu t ,  on 
reso lu t ion  i n t o  two or more systems, do lend themselves t o  separate  solut ions 
which can then be superposed. 

In t h e  second sec t ion  t h e  governing equations,  developed by Hemp, f o r  
t h e  coordinate curves of t h e  member layout of Michell s t ruc tures  were pre- 
sented and two solut ions were obtained. These solut ions give r i s e  t o  t h e  
coordinate systems shown i n  f igu res  3 and 5 f o r  t h e  member layouts  of Michell 
s t ruc tu res .  
a va r i e ty  of force  systems ac t ing  on a plane rectangular domain as w e l l  as on 
a curv i l inear  domain as i l l u s t r a t e d  i n  f igu re  4. 

These coordinate systems are then applied t o  o f f e r  solut ions t o  

In  t h e  t h i r d  sect ion,  two well-known orthogonal coordinate systems, 
namely t h e  d ipolar  and t h e  spherical  systems, were considered f o r  merriber 
layout of Michell s t ruc tu res .  General solut ions were obtained f o r  displace- 
ments t o  s a t i s f y  Michell s t r a i n  c r i t e r i o n  i n  the  two coordinate systems. Two 
in t e re s t ing  s t ruc tu res  a r i s e  as a r e s u l t  of t he  appl ica t ion  of t he  d ipolar  
system; one of them suggests i n t e re s t ing  p o s s i b i l i t i e s  for an en t ry  body con- 
f igu ra t ion  having a displaced center  of g rav i ty  with respect  t o  t h e  geometric 
center ,  which could be he lpfu l  i n  or ien t ing  t h e  body during descent.  The 
o ther  s t ruc tu re  enables a concentrated load t o  be d i s t r ibu ted  over a wide 
bearing area, thereby reducing t h e  p o s s i b i l i t y  of l a r g e  deformations of t h e  
bearing mater ia l .  

For t h e  spher ica l  coordinate system, t h e  general  so lu t ion  of p r inc ipa l  
strain-displacement equations has been derived. Applications t o  physical  
problems could fu r the r  t he  u t i l i t y  of t h i s  solut ion.  It i s  shown t h a t  t h e  



spher ica l  coordinate system admits so lu t ion  t o  t h e  Michell strain c r i t e r i o n  
for  t h e  four cases l i s t e d  i n  equation (80) .  
t h e  solut ion are discussed. 

Some in t e re s t ing  appl ica t ions  of 
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